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Abstract. The most prevalent neurological condition affecting the central nervous system is Parkinson's 

disease. It has been claimed that PD sufferers' handwriting deteriorates. In this sector different machine 

learning algorithms and techniques are applied however these have some limitations. Because of model bias 

generated by data inequity, these artificial intelligence architectures perform well on the vast majority 

however poorly on the minority class. To address this issue, we propose a model where the training process 

is balanced using a random under sampling strategy. The re-sampling techniques are not used on the entire 

dataset before cross validation, rather solely on the training phase at every cross-validation iteration. In this 

purpose, we use the HandPD dataset, which is divided into two sections: Spiral data and Meander data. In 

this study, we use CNN to extract features from handwritten dynamics photos, which collect a range of data 

while analyzing the subject. The HandPD dataset is divided into two portions, 25% used for testing and 

75% for training. with 128*128 and 64*64 images utilized in both cases. For comparison and to discover 

the optimum architecture, we propose CNN Architecture 1(CA1) and CNN Architecture 2(CA2). To serve 

as a point of reference, we run a second experiment on the original data. Despite the fact that any machine 

learning methodology can be used, we pick the OPF (Optimum-Path Forest) classifier because it is quick 

and parameter less. We calculate the overall accuracy and average control and Parkinson Disease patient 

accuracies across the entire test set for each meander dataset and spiral dataset separately. CA1 performs 

better in terms of total accuracy averaged for the test set when using the meander dataset, with accuracy of 

87.24% and 85.10% for 128*128 and 64*64 images, respectively. For average Performance of Patients with 

Parkinson disease throughout test set using the meander dataset, we find that OPF performs better, with 

93.66% and 91.66% accuracy for 128*128 and 64*64 images, respectively. Average overall accuracy 

across all test sets in the case of the Spiral dataset, we discover that OPF performs better, with an accuracy 

of 76.82% for 128*128 images, and CA1 performs better, with an accuracy of 81.19% for 64*64 images. 

Accuracies over the test set for average PD patients in the case of the Spiral dataset, we discover that CA2 

performs better, with an accuracy of 90.89 percent for 128*128 images, while CA1 performs better, with an 

accuracy of 87.68 percent for 64*64 images. Experiments show that different CNN architectures are better 

in different scenarios. However, in the great majority of situations, CA1 performs better. 
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1. Introduction and Motivation  

One of the most common neurological disorders, Parkinson's disease, affects more than 1% of people 

over the age of sixty [1]. This neurodegenerative condition is marked by motor problems such tremor, 

bradykinesia, stiffness, and postural instability and is caused by the loss of dopaminergic function [2]. Motor  
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planning, coding, and synchronization are all impacted, as well as movement initiation and execution.[3]. The 

symptoms of Parkinson's disease are the fourteenth largest cause of mortality in the US, according to the 

Centers for Disease Control and Prevention. With reality, there are currently over 10 million Parkinson's 

patients worldwide. It should be underlined that early Parkinson's disease discovery, as indicated in [4], 

enables prompt treatment and considerably reduces symptoms. Therefore, diagnosing PD at an early stage is 

essential to halting its development and may give patients access to disease-modifying drugs once they become 

available. The need of early diagnosis of PD should be highlighted because doing so can drastically reduce 

one's quality of life, especially for the elderly. Diagnostic criteria based on motor symptom evaluation are now 

used to make this determination. In order to help in PD diagnosis, Pereira et al. [5–9] recently created machine 

learning and computer vision architectures. Pereira et al. gathered information from there were 55 people in all, 

with 37 PD sufferers and 18 healthy people topics [5]. Only spiral drawings were included in the dataset. They 

used supervised models like SVM, Optimal Path Forest (OPF) and Naive Bayes to distinguish between PD 

patients' handwritten drawings and those of healthy people. With the NB model, they got the highest accuracy 

of 78.9%. They created a new dataset from 18 healthy volunteers and 74 Parkinson's disease patients for future 

studies [10]. The collection is called HandPD, and it contains 736 samples, making it the largest publicly 

available handwritten dataset to date. The same approaches SVM, OPF, and NB are used to extract 

characteristics from handwriting drawing made using machine learning methods, employed for classification 

on the HandPD dataset. For the HandPD dataset, they attained a classification accuracy of 67%. In studies 

using the HandPD dataset, there are two major issues. This reflects model bias and a low percentage of PD 

detection accuracy. Other studies, such as Pan et al[11], evaluated RBF and SVM for the start of shaking in 

Parkinson's disease sufferers. Later, Hariharan et al. [13] created an innovative feature weighting procedure 

based on Model-based clustering to enhance the discriminating power of dysphonia-based characteristics, 

achieving 100% classification performance. In order to aid in the diagnosis of Parkinson disease, Peker et al. 

[12] employed complicated neural network models and sound-based characteristics. To deal with PD 

identification, the majority of studies use audio-based datasets. Pereira et. al.[14] proposed handwriting 

gestures to improve PD diagnosis. Same investigators posted a database online that contained 100 of images of 

handwritten doodles created by healthy and unwell individuals. Because Parkinson's disease impairs writing 

ability, such tests are utilized in medical centers, but only a few studies have investigated them for the purposes 

of automated identification. A few years in the past, Peuker et al. [15] successfully conducted PD detection 

using the signals obtained from the ballpoint. Although, the writers did use a sequentially driven feature 

selection approach to extract about four hundred manually created characteristics from the signal, which might 

be too costly. 

 

2. Dataset Description and Problem Identification 

Parkinson's disease sufferers' writing is frequently distorted and shorter than that of healthy people due 

to tremors, diminished motion vibrations, latency, and hardness [16]. Nowadays, it is challenging to establish a 

single diagnostic that will able to recognize an abnormal in the initial phases. 

Parkinson's disease can occasionally be confused with a number of different brain illnesses. This study 

made use of the HandPD dataset, which is freely accessible online [17]. The information was received from 

ninety-two persons at Sao Paulo State University's Botucatu Faculty of Medicine. The data came from two 

groups of people: 74 PD sufferers and 18 healthy people. The first group consists of fifty-nine male and fifteen 

female individuals, whereas the next group consists of six male and twelve female subjects. As a result, healthy 

people make up 19.56 percent of the total dataset, while PD patients make up 80.44 percent. A total of 2 left-

handed and 16 right-handed patients make up the control group. Patients with Parkinson's disease, nonetheless, 

are composed of sixty-nine right-handed people and five left-handed people. Each subject was asked to 

complete six distinct activities during the data collecting process, as indicated in Fig. 1. The picture is a form 

drawn by a 56-year-old Parkinson's disease patient. The HandPD dataset only includes the meander and spiral 
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designs as two of the six possible locations. Each theme produced four spirals and four meanders. Thus, the 

dataset has 92 * 8 = 736 drawings. 368 of the designs—or half—are spirals, and the remaining 144 are 

meanders. To determine a person's skills when completing a form like the one in Picture 1, Pereira et al. [18] 

created a dataset of handwriting exam images. The form's objective is to request completion of a number of 

specific activities that are regarded to be challenging for those with Parkinson's disease, Building "spirals" and 

"meanders" are two examples; row 'c' and row 'd' in Fig. 1 respectively. 

 

 
                                                     (a)                       (b) 

Fig. 1. (a) A form filled out by a fifty-six year-old Parkinson's disease sufferers, (b) an example of a blank form 

 

In this part, we will look at two major issues with the dataset. The uneven nature of the data is the first 

issue, and it has an effect on the developed mathematical models for machine learning. Machine learning 

architectures that are trained on skewed data have skewed productivity because they neglect the minority group 

and elevate the dominant class [19]. Due to the rarity of minority class incidents during the training process, 

projections for minorities are also uncommon, undiscovered, or overlooked [20]. Convolutional neural 

networks have not before been used to learn characteristics from artwork generated by handwritten dynamics, 

which gather a variety of data while evaluating a person. We also want to point out that the purpose of this 

research is not to compare and uncover the best CNN architecture. Another essential point to note is that these 

studies do not calculate the average overall accuracy as well as the average control and PD patient accuracies 

for each meander and spiral data set individually over the test set. 

 

3. Methodology 

We recommend utilizing CNNs to simulate the identification of PD and normal individuals as an image 

identification task. In a nutshell, the digital pen's impulses are translated into visuals. Every test consists of r 

rows (duration of the test in ms) and six columns (the previously mentioned six signals channel). In order to 

achieve our goals, every test must be expanded to a square matrices. After rescaling, every test matrix is 

balanced and represented as a gray-scale image. We display various sketches together with their transformed 

equivalents as time series images. Drawings of meanders and spirals, as well as those of people in good health 

and those with Parkinson's, all show variances. A CNN-based method was used to classify the meanders and 
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spirals produced by the study's control subjects and PD patients. As a benchmark, we also conduct a unique 

analysis on the raw data. The OPF classification algorithm is chosen despite the fact that any supervised 

machine learning technique can be used because of its speed and lack of parameters [21,22]. In this study, 

Caffe offers a clean and flexible framework for cutting-edge deep learning algorithms as well as a set of 

reference models. Additionally, it permits experimentation and easy platform swapping for deployment from 

prototyping devices to cloud environments. Meanders and spirals are the two datasets used for the experiments. 

There are 308 photos in both datasets, with there have been two hundred and twenty four Parkinson patients 

and eighty four normal group samples in this study. We also put the convolutional neural network through their 

paces at 64*64 and 128*128 pixel image resolutions. During one experiment, we also investigate the effects of 

the training set's size by using 75% of the dataset for learning and 25% for evaluation. In terms of original 

code, the well-known Caffe library is used [23], On the Graphics Processor Units platform, it is designed for 

general-purpose computing. Consequently, more efficient implementations are possible. Each experiment is 

assessed using a separate Caffe-provided CNN architecture with ten thousand training iterations and sixteen-bit 

mini-batches are used in this experiment. We cross-validate using twenty runnings to offer a data study using 

the Wilcoxon signed-rank check with such a value of 0:05 [24]. To give a more in-depth experimental 

investigation, CA1 and CA2 CNN architectures are proposed.After getting the final result from experimental 

setup then we compare the architectures and try to find out the best architecture.Finally we turn a conclusion 

and find out the future work. 

 

Fig. 2. Proposed Methodology 

 

 

The following are some of the retrieved features from HandPD data set [25, 26]: 

C1: The difference between the Hand written trace and Exam template radius's Root Mean Square , which is 

calculated using the following formula: 

                          RMS=√
1

𝑛
∑ (𝑟𝐻𝑇

𝑖 − 𝑟𝐸𝑇
𝑖 )𝑛

𝑖=1                                                                (1)    

Whrere n= number of sampled points, 𝑟𝐻𝑇
𝑖  = the Hand written trace radius of i-th point and 𝑟𝐸𝑇

𝑖  = the 

Exam template radius of i-th point. 

C2: The biggest difference between Hand written trace and Exam template radius is the second characteristic, 

which is calculated using the formula: 
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                                                             𝑑𝑖𝑠
max= arg 𝑚𝑎𝑥𝑖{|𝑟𝐻𝑇

𝑖 −𝑟𝐸𝑇
𝑖 |}

                                                                 (2) 

C3: This feature is the lowest difference between Hand written trace and Exam template radius, which is 

provided by dmin in the following equation: 

                                                       𝑑𝑖𝑠
min= arg 𝑚𝑖𝑛𝑖{|𝑟𝐻𝑇

𝑖 −𝑟𝐸𝑇
𝑖 |}

                                                                          (3) 

C4: The next feature is the standard deviation of the difference between Hand written trace and Exam template 

radius. 

C5: Mean Relative Tremor is the fifth characteristic (MRT). This aspect was suggested by Pereira et al. to 

assess a person's HT's level of tremor [30]. It is the standard deviation of the distance between a sample point's 

radius and its d left-nearest neighbors' radius. The following formula is used to calculate this feature: 

                      MRT= 
1

𝑛−𝑑
∑ |𝑛

𝑖=𝑑 𝑟𝐸𝑇
𝑖 − 𝑟𝐸𝑇

𝑖−𝑑+1|                                                                (4) 

Where d stands for the separation of the sample sites from which the radius variation was calculated. 
The relative tremor  |𝑟𝐸𝑇

𝑖 − 𝑟𝐸𝑇
𝑖−𝑑+1| is used to calculate the next three features. 

C6: The maximum ET is indicated by the sixth characteristic. 

C7: The minimum ET is indicated by the seventh characteristic. 

C8: The eighth feature is the typical derivation of Exam template values. 

C9: The last feature is the frequency with which the difference between the Exam pattern radius and the 

Handwritten trace changes from positive to negative, or vice versa. 

After analyzing the provided dataset and making it acceptable for machine learning techniques, we 

used two resampling strategies that depend on changing the class distribution. We currently perform the 

following actions with the unbalanced HandPD dataset: 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Flowchart of Balancing the HandPD data set 

 

First, we use the HandPD dataset that is available online, followed by an undersampling technique 

called Neighborhood Cleaning Rule (NCL), and an oversampling technique called Adaptive Semi-
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unsupervised Weighted Oversampling (A-SUWO). In order to handle this unbalanced dataset, we employ a 

hybrid oversampling/undersampling technique. 

 

Throughout this study, we use a Convolutional neural approach to classify meanders and spirals 

produced by the healthy controls and Parkinson patients. We conduct a second test using the original data as a 

baseline. Any supervised machine learning algorithm can be utilized, though, because it is a rapid and 

parameter-free technique, we choose the OPF classifier [27], [28]. Two datasets were created from the 

research: (i) meanders and (ii) spirals. 84 samples from the normal control and 224 samples from PD sufferers 

total 308 images in both groups. We also tested the reliability of CNNs at two distinct quality of images: 64 

*64 and 128* 128 pixels. The HandPD dataset was divided into two portions: 25% for testing and 75% for 

training. The implementations are more effective because the source code was written using the well-known 

Caffe library [29]. 10,000 learning cycles using 16-piece mini-batches and a distinct Convolutional 

Architecture for Fast Feature Embedding provided CNN architecture were utilized to assess each experiment. 

With 20 running, we performed a cross-validation. In order to give a more experimental investigation, various 

CNN architectures were used: 

 

CNN Architecture 1(CA1):  

This design is made up of five pooling layers, five convolution layers, five pooling layers, and two normalizing 

layers. It has five inner product layers, five ReLU layers, one soft max loss layer, two dropout levels and one 

accuracy layer for testing among the convolutional layers. 

 

CNN Architecture 2(CA2):  

Three pooling layers and three convolution layers are used in a simpler version. It has three ReLU layers, one 

soft max loss layer, two inner product layers, and for the testing purposes one accuracy layer is used. 

 

1. Experimental Findings  

In this chapter,we dicuss the experimental details result with proper tabuler formet. We calculate the 

overall accuracy with the help of following formula:   

                     Accuracy= (𝟏 −
𝒆𝒓𝒓𝒐𝒓𝒔

𝒅𝒂𝒕𝒂𝒔𝒆𝒕 𝒔𝒊𝒛𝒆
) ∗ 𝟏𝟎𝟎                                                      (5) 

In this section, two different CNN architectures were compared, and a baseline method using the OPF 

learning algorithm with both spiral and meander collections. For all cases, we consider the 75% for training 

data and 25% for testing data.  

 

Table 1. Considering the Meander Dataset, average overall accuracy over the test set 
 

128 *128 64  *64 

CA1 87.24% 85.10% 

CA2 63.22% 68.88% 

OPF 81.92% 84.52% 
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In table 1 we calculate, considering the Meander Dataset, overall average of the test set's accuracy. 

Here we take the 128*128 and 64*64 sizes images. We see that for 128*128 images the CA1, CA2 and OPF 

accuracy are 87.24%, 63.22%, 81.92% respectively. We also observe that for 64*64 images the CA1, CA2 and 

OPF accuracy are 85.10%, 68.88%, 84.52% respectively. Here the best performer is CA1 for the both cases. 

Table 2. Average PD Patient Accuracy across the Test Set Using Meander Dataset 
 

128 *128 64  *64 

CA1 91.55% 89.65% 

CA2 85.20% 82.24% 

OPF 93.66% 91.66% 

In table 2 we calculate average PD Patient Accuracy Across The Test Set Using Meander Dataset. 

Here we take the 128*128 and 64*64 sizes images. We see that for 128*128 images the CA1,CA2 and OPF 

accuracy are 91.55%, 85.20%, 93.66% respectively. We also observe that for 64*64 images the CA1,CA2 and 

OPF accuracy are 89.65%, 82.24%, 91.66% respectively. Here the best performer is OPF for the both cases. 

But if we consider the CA1 and CA2, here in these two, CA1 is best. 

Table 3. Mean Total Accuracy Including Spiral Dataset Well over Test Set 
 

128 *128 64  *64 

CA1 76.53% 81.19% 

CA2 71.78% 77.21% 

OPF 76.82% 78.32% 

In table 3 we calculate Mean Total Accuracy Including Spiral Dataset Well Over Test Set. Here we 

take the 128*128 and 64*64 sizes images. We see that for 128*128 images the CA1,CA2 and OPF accuracy 

are 76.53%, 71.78%, 76.82% respectively. We also observe that for 64*64 images the CA1,CA2 and OPF 

accuracy are 81.19%, 77.21%, 78.32% respectively. Here the best performer is CA1 for the 64*64 image and 

OPF is best for 128*128 images. But if we consider the CA1 and CA2, here in these two, CA1 is best for 

128*128 images. 

Table 4. Mean PD Individuals Accuracy across the Test Set Using Spiral Data 
 

128 *128 64  *64 

CA1 84.80% 87.68% 

CA2 90.89% 84.33% 

OPF 83.24% 86.45% 

In table 4 we calculate Mean PD Individuals Accuracy across the test set using spiral data. Here we 

take the 128*128 and 64*64 sizes images. We see that for 128*128 images the CA1, CA2 and OPF accuracy 

are 84.80%, 90.89%, 83.24% respectively. We also observe that for 64*64 images the CA1, CA2 and OPF 

accuracy are 87.68%, 84.33%, 86.45% respectively. Here the best performer is CA1 for the 64*64 image and 

CA2 is best for 128*128 images. Tables 1, 2, 3, and 4 are depicted in Fig. 4, 5, 6, and 7, respectively. Here we 

get the clear view and find the clear findings of this research. 
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Fig. 4. Considering the Meander Dataset, overall average of the test set's accuracy. 

 

 

Fig. 5. Average PD Patient Accuracy across the Test Set Using Meander Dataset 

 

 

Fig. 6. Mean Total Accuracy Including Spiral Dataset Well over Test Set 
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Fig. 7. Mean PD Individuals Accuracy Across the Test Set Using Spiral Data. 

 

Ten study summaries for Parkinson's disease were supplied in the introduction and motivation section; 

presently, it is clear that CA1 outperforms these algorithms, and in some cases, CA2 as well. 

 

2. Conclusion 

An illness that affects the central nervous system is called Parkinson's disease, is brought on by the 

death of brain cells. Trembling, tremors, stiffness, difficulty walking, and loss of hand control are the early 

symptoms of the condition. Since Parkinson's illness is incurable, early detection is important. In this sector 

different machine learning algorithms and different techniques are applied however these have some 

limitations. Because of model bias generated by data that is unbalanced, these Models for machine learning 

perform well on the the vast majority however poorly on the minority class. To address this issue of biasness, 

we propose a model that the training process be balanced using a random under sampling strategy. The 

resampling techniques are not used on the entire dataset before cross validation, but rather solely on the 

training examples at every cross-validation iteration. We use the HandPD data set, which is divided into two 

sections: Spiral data and Meander data. CNNs are used in this study to extract properties from images 

produced by handwritten movements, which collect data as the topic is being studied. The HandPD dataset is 

divided into two portions, with 25% used for testing and 75% for training. With 128*128 and 64*64 images 

(chosen at random, not for any particular reason) utilized in both cases. Each experiment is run with 10,000 

training iterations and 16-bit mini-batches using different CNN architectures given by Caffe. With 20 

running’s, we perform a cross-validation. For comparison and to discover the optimum architecture, we 

propose CNN Architecture 1(CA1) and CNN Architecture 2(CA2). To serve as a point of reference, we also 

conduct a different experiment on the unprocessed data. Any machine learning methodology can be applied, 

though. We pick the OPF (Optimum-Path Forest) classifier because it is a quick and parameter less method. 

We calculate the average overall accuracy and the average sufferer with Parkinson's disease and the average 

normal accuracies over the test set for each meander data set and spiral data set separately. CA1 performs 

better in terms of total accuracy averaged over the full test set when using the meander dataset, with accuracy 

of 87.24 percent and 85.10 percent for 128*128 and 64*64 images, respectively. Accuracy rate over the test set 

for typical Patients with PD using the meander data, we find that OPF performs better, with 93.66 percent and 

91.66 percent accuracy for 128*128 and 64*64 images, respectively. Average overall accuracy across all test 

sets in the case of the Spiral dataset, we discover that OPF performs better, with an accuracy of 76.82 percent 

for 128*128 images, and CA1 performs better, with an accuracy of 81.19 percent for 64*64 images. 
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Accuracies over the test set for average PD patients in the case of the Spiral dataset, we discover that CA2 

performs better, with an accuracy of 90.89 percent for 128*128 images, while CA1 performs better, with an 

accuracy of 87.68 percent for 64*64 images. Experiments show that different CNN architectures are better in 

different scenarios. Nonetheless, CA1 consistently outperforms other methods. 
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